Lidar measurements of solid rocket propellant fire particle plumes.

Abstract

This paper presents the first, to our knowledge, direct measurement of aerosol produced by an aluminized solid rocket propellant (SRP) fire on the ground. Such fires produce aluminum oxide particles small enough to loft high into the atmosphere and disperse over a wide area. These results can be applied to spacecraft launchpad accidents that expose spacecraft to such fires; during these fires, there is concern that some of the plutonium from the spacecraft power system will be carried with the aerosols. Accident-related lofting of this material would be the net result of many contributing processes that are currently being evaluated. To resolve the complexity of fire processes, a self-consistent model of the ground-level and upper-level parts of the plume was determined by merging ground-level optical measurements of the fire with lidar measurements of the aerosol plume at height during a series of SRP fire tests that simulated propellant fire accident scenarios. On the basis of the measurements and model results, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) team was able to estimate the amount of aluminum oxide (alumina) lofted into the atmosphere above the fire. The quantification of this ratio is critical for a complete understanding of accident scenarios, because contaminants are transported through the plume. This paper provides an estimate for the mass of alumina lofted into the air.

Topics

0 Figures and Tables

    Download Full PDF Version (Non-Commercial Use)